Rate of Change of Graphs NOTES:

Positive rate of change: When the value of \(x \) increases, the value of \(y \) increases and the graph slants upward.

![Graph with positive rate of change]

Negative rate of change: When the value of \(x \) increases, the value of \(y \) decreases and the graph slants downward.

![Graph with negative rate of change]

Initial Value: The amount you start with in a function.

On a graph, the initial value is the point where the data passes through the y-axis.

In a table, when the x-value is zero, the y-value is the initial value.

On a graph, rate of change is also determined by the change in the \(y \) over the change in \(x \), or the change in the dependent variable divided by the change in the independent variable.

Find Rate of Change

- **Distance:** 6 mi
- **Time:** 1 hr

\[
\frac{\text{Change in Distance}}{\text{Change in Time}} = \frac{6 \text{ mi}}{1 \text{ hr}} = 6 \text{ mi/hr}
\]

What is the change in \(y \)?

What is the change in \(x \)?

Write as a fraction:

\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:

What is the initial value?
What is the change in Y? What is the initial value?

What is the change in x?

Write as a fraction:
\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:

What is the change in Y? What is the initial value?

What is the change in x?

Write as a fraction:
\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:

Write as a fraction:
\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:

What is the initial value?
Write as a fraction:
\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:
What is the initial value?

Write as a fraction:
\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:
What is the initial value?

Write as a fraction:
\[
\frac{\text{change in } y}{\text{change in } x}
\]

Now write as a statement:
What is the initial value?